Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 217
Filtrar
1.
BMC Genomics ; 25(1): 322, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561677

RESUMO

BACKGROUND: Primulina hunanensis, a troglobitic plant within the Primulina genus of Gesneriaceae family, exhibits robust resilience to arid conditions and holds great horticultural potential as an ornamental plant. The work of chloroplast genome (cpDNA) has been recently accomplished, however, the mitochondrial genome (mtDNA) that is crucial for plant evolution has not been reported. RESULTS: In this study, we sequenced and assembled the P. hunanensis complete mtDNA, and elucidated its evolutionary and phylogenetic relationships. The assembled mtDNA spans 575,242 bp with 43.54% GC content, encompassing 60 genes, including 37 protein-coding genes (PCGs), 20 tRNA genes, and 3 rRNA genes. Notably, high number of repetitive sequences in the mtDNA and substantial sequence translocation from chloroplasts to mitochondria were observed. To determine the evolutionary and taxonomic positioning of P. hunanensis, a phylogenetic tree was constructed using mitochondrial PCGs from P. hunanensis and 32 other taxa. Furthermore, an exploration of PCGs relative synonymous codon usage, identification of RNA editing events, and an investigation of collinearity with closely related species were conducted. CONCLUSIONS: This study reports the initial assembly and annotation of P. hunanensis mtDNA, contributing to the limited mtDNA repository for Gesneriaceae plants and advancing our understanding of their evolution for improved utilization and conservation.


Assuntos
Genoma de Cloroplastos , Genoma Mitocondrial , Lamiales , Filogenia , DNA Mitocondrial/genética , Lamiales/genética , Mitocôndrias/genética
2.
J Ethnopharmacol ; 327: 117980, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38453098

RESUMO

INTRODUCTION: The botanical family Acanthaceae (order Lamiales) potentially comprises 4900 species in 191 genera with extensive morphological, habit and habitat diversity. The family is widely distributed throughout the world but is especially rich in tropical and subtropical regions. Many of its species have great ornamental importance and are broadly used for medicinal purposes in several countries of Asia and Africa. Brazil is a main center of diversity of the family, where they are distributed across all its biomes, mainly in the herbaceous-shrub stratum. Medicinal investigations about Brazilian species are scarce, the exception being a single native species, Justicia pectoralis Jacq., that is widely used and studied chemically. AIM OF THE REVIEW: This work compiled studies that indicated folk medicinal use, investigated biological activity, or evaluated the chemical composition of Brazilian species of Acanthaceae. MATERIAL AND METHODS: Medicinal uses, investigations of biological activities and chemical data were collected and summarized through bibliographic surveys. Tables were compiled to standardize the information and the appropriate references were gathered for each species. Registration of chemical components used in the treatment of ailments and in preserving health were emphasized with the aim of stimulating future investigations. RESULTS: The breadths of habitats and morphologies of the family are directly related to its chemical diversity, as confirmed here for Brazilian species. Although the investigated species represent less than 9% of the total richness of the family in Brazil, they encompass a great diversity of chemical substances. The data indicated folk medicinal uses for 26 species and biological tests for 23, while 30 species were investigated chemically. Ruellia and Justicia were the most researched genera with 12 and 11 species, representing approximately 14% and 7% of Brazilian species of each genus, respectively. Two species are native to other countries but become naturalized in Brazil. Studies of native species were carried out in different countries around the world, with many reports of medicinal uses and biological tests. Examples of uses include anticancer and antidepressant actions, as well as activities against respiratory problems and other diseases. CONCLUSIONS: This work highlights the chemical and biological diversity of the studied Brazilian species of Acanthaceae, which emphasizes the need to expand studies with native Brazilian species.


Assuntos
Acanthaceae , Produtos Biológicos , Lamiales , Brasil , Medicina Tradicional , Fitoterapia
3.
Int J Mol Sci ; 25(4)2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38396939

RESUMO

The typical symptom of Paulownia witches' broom (PaWB), caused by phytoplasma infection, is excessive branching, which is mainly triggered by auxin metabolism disorder. Aux/IAA is the early auxin-responsive gene that participates in regulating plant morphogenesis such as apical dominance, stem elongation, lateral branch development, and lateral root formation. However, no studies have investigated the response of the Aux/IAA gene family to phytoplasma infection in Paulownia fortunei. In this study, a total of 62 Aux/IAA genes were found in the genome. Phylogenetic analysis showed that PfAux/IAA genes could be divided into eight subgroups, which were formed by tandem duplication and fragment replication. Most of them had a simple gene structure, and several members lacked one or two conserved domains. By combining the expression of PfAux/IAA genes under phytoplasma stress and SA-treated phytoplasma-infected seedlings, we found that PfAux/IAA13/33/45 may play a vital role in the occurrence of PaWB. Functional analysis based on homologous relationships showed a strong correlation between PfAux/IAA45 and branching. Protein-protein interaction prediction showed that PfARF might be the binding partner of PfAux/IAA, and the yeast two-hybrid assay and bimolecular fluorescent complementary assay confirmed the interaction of PfAux/IAA45 and PfARF13. This study provides a theoretical basis for further understanding the function of the PfAux/IAA gene family and exploring the regulatory mechanism of branching symptoms caused by PaWB.


Assuntos
Cytisus , Lamiales , Phytoplasma , Phytoplasma/genética , Filogenia , Lamiales/genética , Ácidos Indolacéticos
4.
Int J Mol Sci ; 25(4)2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38397102

RESUMO

The GRAS (GAI\RGA\SCL) gene family encodes plant-specific transcription factors that play crucial roles in plant growth and development, stress tolerance, and hormone network regulation. Plant dwarfing symptom is mainly regulated by DELLA proteins of the GRAS gene subfamily. In this study, the association between the GRAS gene family and Paulownia witches' broom (PaWB) was investigated. A total of 79 PfGRAS genes were identified using bioinformatics methods and categorized into 11 groups based on amino acid sequences. Tandem duplication and fragment duplication were found to be the main modes of amplification of the PfGRAS gene family. Gene structure analysis showed that more than 72.1% of the PfGRASs had no introns. The genes PfGRAS12/18/58 also contained unique DELLA structural domains; only PfGRAS12, which showed significant response to PaWB phytoplasma infection in stems, showed significant tissue specificity and responded to gibberellin (GA3) in PaWB-infected plants. We found that the internodes were significantly elongated under 100 µmol·L-1 GA3 treatment for 30 days. The subcellular localization analysis indicated that PfGRAS12 is located in the nucleus and cell membrane. Yeast two-hybrid (Y2H) and bimolecular fluorescence complementation (BiFC) assays confirmed that PfGRAS12 interacted with PfJAZ3 in the nucleus. Our results will lay a foundation for further research on the functions of the PfGRAS gene family and for genetic improvement and breeding of PaWB-resistant trees.


Assuntos
Cytisus , Lamiales , Magnoliopsida , Phytoplasma , Magnoliopsida/genética , Doenças das Plantas/genética , Phytoplasma/genética , Melhoramento Vegetal , Lamiales/genética
5.
Am J Bot ; 111(2): e16271, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38265745

RESUMO

PREMISE: Duplicated genes (paralogs) are abundant in plant genomes, and their retention may influence the function of genetic programs and contribute to evolutionary novelty. How gene duplication affects genetic modules and what forces contribute to paralog retention are outstanding questions. The CYCLOIDEA(CYC)-dependent flower symmetry program is a model for understanding the evolution of gene duplication, providing multiple examples of paralog partitioning and novelty. However, a novel CYC gene lineage duplication event near the origin of higher core Lamiales (HCL) has received little attention. METHODS: To understand the evolutionary fate of duplicated HCL CYC2 genes, we determined the effects on flower symmetry by suppressing MlCYC2A and MlCYC2B expression using RNA interference (RNAi). We determined the phenotypic effects on flower symmetry in single- and double-silenced backgrounds and coupled our functional analyses with expression surveys of MlCYC2A, MlCYC2B, and a putative downstream RADIALIS (MlRAD5) ortholog. RESULTS: MlCYC2A and MlCYC2B jointly contribute to bilateral flower symmetry. MlCYC2B exhibits a clear dorsal flower identity function and may additionally function in carpel development. MlCYC2A functions in establishing dorsal petal shape. Further, our results suggest an MlCYC2A-MlCYC2B regulatory interaction, which may affect pathway homeostasis. CONCLUSIONS: Our results suggest that CYC paralogs specific to higher core Lamiales may be selectively retained for their joint contribution to bilateral flower symmetry, similar to the independently derived CYC paralogs in the Lamiales model for bilateral flower symmetry research, Antirrhinum majus (snapdragon).


Assuntos
Antirrhinum , Lamiales , Mimulus , Filogenia , Mimulus/genética , Genes de Plantas , Proteínas de Plantas/genética , Lamiales/genética , Flores , Antirrhinum/genética , Antirrhinum/metabolismo , Regulação da Expressão Gênica de Plantas
6.
J Ethnopharmacol ; 321: 117461, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-37979817

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Paulownia tomentosa Steud. (P. tomentosa) is a medium-sized tree traditionally used in Chinese folk medicine for the treatment of infectious diseases. It is a rich source of prenylated phenolic compounds that have been extensively studied for their promising biological activities. AIM OF THE STUDY: Due to the increasing development of antibiotic resistance, our study investigated plant-derived natural products from the fruits of P. tomentosa that could control Staphylococcus aureus infections with novel targets/modes of action and reduce antimicrobial resistance. MATERIALS AND METHODS: The ethanolic extract was fractionated and detected by liquid chromatography. The antistaphylococcal effects of the plant formulations were studied in detail in vitro by various biological methods, including microdilution methods for minimum inhibitory concentration (MIC), the checkerboard titration technique for synergy assay, fluorescence measurements for membrane disruption experiments, autoinducer-2-mediated bioassay for quorum sensing inhibition, and counting of colony-forming units for relative adhesion. Morphology was examined by transmission electron microscopy. RESULTS: Total ethanolic extract and chloroform fraction showed MICs of 128 and 32 µg/mL, respectively. Diplacol, diplacone, and 3'-O-methyl-5'-hydroxydiplacone inhibited S. aureus growth in the range of 8-16 µg/mL. Synergistic potential was shown in combination with mupirocin and fusidic acid. The ethanolic extract and the chloroform fraction destroyed the cell membranes by 91.61% and 79.46%, respectively, while the pure compounds were less active. The ethanolic extract and the pure compounds reduced the number of adhered cells to 47.33-10.26% compared to the untreated control. All tested plant formulations, except diplacone, inhibited quorum sensing of S. aureus. Transmission electron microscopy showed deformation of S. aureus cells. CONCLUSIONS: The products from the fruit of P. tomentosa showed antimicrobial properties against S. aureus alone and in combination with antibiotics. By affecting intracellular targets, geranylated flavonoids proposed novel approaches in the control of staphylococcal infections.


Assuntos
Anti-Infecciosos , Lamiales , Infecções Estafilocócicas , Staphylococcus aureus , Frutas/química , Extratos Vegetais/química , Clorofórmio , Anti-Infecciosos/farmacologia , Antibacterianos/química , Testes de Sensibilidade Microbiana , Etanol/farmacologia
7.
BMC Plant Biol ; 23(1): 654, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38110858

RESUMO

BACKGROUND: Drought is one of the main consequences of global climate change and this problem is expected to intensify in the future. Resurrection plants evolved the ability to withstand the negative impact of long periods of almost complete desiccation and to recover at rewatering. In this respect, many physiological, transcriptomic, proteomic and genomic investigations have been performed in recent years, however, few epigenetic control studies have been performed on these valuable desiccation-tolerant plants so far. RESULTS: In the present study, for the first time for resurrection plants we provide evidences about the differential chromatin accessibility of Haberlea rhodopensis during desiccation stress by ATAC-seq (Assay for Transposase Accessible Chromatin with high-throughput sequencing). Based on gene similarity between species, we used the available genome of the closely related resurrection plant Dorcoceras hygrometricum to identify approximately nine hundred transposase hypersensitive sites (THSs) in H. rhodopensis. The majority of them corresponds to proximal and distal regulatory elements of different genes involved in photosynthesis, carbon metabolism, synthesis of secondary metabolites, cell signalling and transcriptional regulation, cell growth, cell wall, stomata conditioning, chaperons, oxidative stress, autophagy and others. Various types of binding motifs recognized by several families of transcription factors have been enriched from the THSs found in different stages of drought. Further, we used the previously published RNA-seq data from H. rhodopensis to evaluate the expression of transcription factors putatively interacting with the enriched motifs, and the potential correlation between the identified THS and the expression of their corresponding genes. CONCLUSIONS: These results provide a blueprint for investigating the epigenetic regulation of desiccation tolerance in resurrection plant H. rhodopensis and comparative genomics between resurrection and non-resurrection species with available genome information.


Assuntos
Craterostigma , Lamiales , Craterostigma/genética , Craterostigma/metabolismo , Dessecação , Cromatina , Epigênese Genética , Proteômica , Lamiales/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transposases/genética , Transposases/metabolismo
8.
BMC Plant Biol ; 23(1): 660, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38124058

RESUMO

BACKGROUND: Independent origins of carnivory in multiple angiosperm families are fabulous examples of convergent evolution using a diverse array of life forms and habitats. Previous studies have indicated that carnivorous plants have distinct evolutionary trajectories of plastid genome (plastome) compared to their non-carnivorous relatives, yet the extent and general characteristics remain elusive. RESULTS: We compared plastomes from 9 out of 13 carnivorous families and their non-carnivorous relatives to assess carnivory-associated evolutionary patterns. We identified inversions in all sampled Droseraceae species and four species of Utricularia, Pinguicula, Darlingtonia and Triphyophyllum. A few carnivores showed distinct shifts in inverted repeat boundaries and the overall repeat contents. Many ndh genes, along with some other genes, were independently lost in several carnivorous lineages. We detected significant substitution rate variations in most sampled carnivorous lineages. A significant overall substitution rate acceleration characterizes the two largest carnivorous lineages of Droseraceae and Lentibulariaceae. We also observe moderate substitution rates acceleration in many genes of Cephalotus follicularis, Roridula gorgonias, and Drosophyllum lusitanicum. However, only a few genes exhibit significant relaxed selection. CONCLUSION: Our results indicate that the carnivory of plants have different effects on plastome evolution across carnivorous lineages. The complex mechanism under carnivorous habitats may have resulted in distinctive plastome evolution with conserved plastome in the Brocchinia hechtioides to strongly reconfigured plastomes structures in Droseraceae. Organic carbon obtained from prey and the efficiency of utilizing prey-derived nutrients might constitute possible explanation.


Assuntos
Droseraceae , Genomas de Plastídeos , Lamiales , Magnoliopsida , Humanos , Magnoliopsida/genética , Carnivoridade , Lamiales/genética , Droseraceae/genética , Filogenia , Evolução Molecular
9.
Int J Mol Sci ; 24(21)2023 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-37958947

RESUMO

Ionizing radiation (IR) and reactive oxygen species (ROS)-induced oxidative stress can cause damage to cellular biomolecules, including DNA, proteins, and lipids. These harmful effects can compromise essential cellular functions and significantly raise the risk of metabolic dysfunction, accumulation of harmful mutations, genome instability, cancer, accelerated cellular senescence, and even death. Here, we present an investigation of HeLa cancer cells' early response to gamma IR (γ-IR) and oxidative stress after preincubation of the cells with natural extracts of the resurrection plant Haberlea rhodopensis. In light of the superior protection offered by plant extracts against radiation and oxidative stress, we investigated the cellular defence mechanisms involved in such protection. Specifically, we sought to evaluate the molecular effects of H. rhodopensis extract (HRE) on cells subjected to genotoxic stress by examining the components of the redox pathway and quantifying the transcription levels of several critical genes associated with DNA repair, cell cycle regulation, and apoptosis. The influence of HRE on genome integrity and the cell cycle was also studied via comet assay and flow cytometry. Our findings demonstrate that HREs can effectively modulate the cellular response to genotoxic and oxidative stress within the first two hours following exposure, thereby reducing the severity of such stress. Furthermore, we observed the specificity of genoprotective HRE doses depending on the source of the applied genotoxic stress.


Assuntos
Lamiales , Oxirredução , Estresse Oxidativo , Extratos Vegetais/farmacologia , Dano ao DNA , Expressão Gênica , Espécies Reativas de Oxigênio
10.
J Evol Biol ; 36(10): 1455-1470, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37731241

RESUMO

The relative contribution of adaptation and phenotypic plasticity can vary between core and edge populations, with implications for invasive success. We investigated the spread of the invasive yellow monkeyflower, Erythranthe gutatta in New Zealand, where it is spreading from lowland agricultural land into high-elevation conservation areas. We investigated the extent of phenotypic variation among clones from across the South Island, looked for adaptation and compared degrees of plasticity among lowland core versus montane range-edge populations. We grew 34 clones and measured their vegetative and floral traits in two common gardens, one in the core range at 9 m a.s.l. and one near the range-edge at 560 m a.s.l. Observed trait variation was explained by a combination of genotypic diversity (as identified through common gardens) and high phenotypic plasticity. We found a subtle signature of local adaptation to lowland habitats but all clones were plastic and able to survive and reproduce in both gardens. In the range-edge garden, above-ground biomass was on average almost double and stolon length almost half that of the same clone in the core garden. Clones from low-elevation sites showed higher plasticity on average than those from higher elevation sites. The highest performing clones in the core garden were also top performers in the range-edge garden. These results suggest some highly fit general-purpose genotypes, possibly pre-adapted to New Zealand montane conditions, best explains the spread of E. gutatta from lowland to higher elevation areas.


Assuntos
Lamiales , Mimulus , Nova Zelândia , Adaptação Fisiológica/genética , Genótipo , Fenótipo
11.
Mol Phylogenet Evol ; 189: 107929, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37726037

RESUMO

Ameroglossum is a rare plant genus endemic to northeastern of Brazil, initially monospecific (A. pernambucense) and recently expanded by the description of eight new species and two related genera. The genus was initially placed in the family Scrophulariaceae, but this has never been phylogenetically tested. This group is ecologically restricted to rocky inselberg habitats that function as island-like systems (ILS) with spatial fragmentation, limited area, environmental heterogeneity, temporal isolation and low connectivity. Here we use a phylogenetic perspective to test the hypothesis that Ameroglossum diversification was related to island-like radiation in inselbergs. Our results support that Ameroglossum is monophyletic only with the inclusion of Catimbaua and Isabelcristinia (named here as Ameroglossum sensu lato) and this group was well-supported in the family Linderniaceae. Biogeographic analyses suggest that the ancestral of Ameroglossum and related genus arrived in South America c.a. 15 million years ago by long-distance dispersal, given the ancestral distribution of Linderniaceae in Africa. In rocky outcrop habitats, Ameroglossum s.l. developed floral morphological specialization associated with pollinating hummingbirds, compatible with an island-like model. However, no increase in speciation rate was detected, which may be related to high extinction rates and/or slow diversification rate in this ecologically restrictive environment. Altogether, in Ameroglossum key innovations involving flowers seem to have offered opportunities for evolution of greater phenotypic diversity and occupation of new niches in rocky outcrop environments.


Assuntos
Ecossistema , Lamiales , Filogenia , Flores/genética , Brasil
12.
Science ; 380(6651): 1275-1281, 2023 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-37347863

RESUMO

Growth coordination between cell layers is essential for development of most multicellular organisms. Coordination may be mediated by molecular signaling and/or mechanical connectivity between cells, but how genes modify mechanical interactions between layers is unknown. Here we show that genes driving brassinosteroid synthesis promote growth of internal tissue, at least in part, by reducing mechanical epidermal constraint. We identified a brassinosteroid-deficient dwarf mutant in the aquatic plant Utricularia gibba with twisted internal tissue, likely caused by mechanical constraint from a slow-growing epidermis. We tested this hypothesis by showing that a brassinosteroid mutant in Arabidopsis enhances epidermal crack formation, indicative of increased tissue stress. We propose that by remodeling cell walls, brassinosteroids reduce epidermal constraint, showing how genes can control growth coordination between layers by means of mechanics.


Assuntos
Brassinosteroides , Lamiales , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Brassinosteroides/biossíntese , Comunicação Celular , Parede Celular/metabolismo , Lamiales/citologia , Lamiales/genética , Lamiales/metabolismo , Epiderme Vegetal/metabolismo
13.
Genome ; 66(11): 281-294, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37159948

RESUMO

The phylogeny of the species from Phrymaceae and Mazaceae has undergone many adjustments and changes in recent years. Moreover, there is little plastome information on the Phrymaceae. In this study, we compared the plastomes of six species from the Phrymaceae and 10 species from the Mazaceae. The gene order, contents, and orientation of the 16 plastomes were found to be highly similar. A total of 13 highly variable regions were identified among the 16 species. An accelerated rate of substitution was found in the protein-coding genes, particularly cemA and matK. The combination of effective number of codons, parity rule 2, and neutrality plots revealed that the codon usage bias is affected by mutation and selection. The phylogenetic analysis strongly supported {Mazaceae [(Phrymaceae + Wightiaceae) + (Paulowniaceae + Orobanchaceae)]} relationships in the Lamiales. Our findings can provide useful information to analyze the phylogeny and molecular evolution within the Phrymaceae and Mazaceae.


Assuntos
Lamiales , Magnoliopsida , Filogenia , Uso do Códon , Lamiales/genética , Magnoliopsida/genética , Códon , Evolução Molecular
14.
Int J Biol Macromol ; 242(Pt 2): 124770, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37164135

RESUMO

The current understanding of the pathogenesis of phytoplasma is still very limited and challenging. Here, ceRNA regulatory network and degradome sequencing identified a PfmiR156f-PfSPL regulatory module in Paulownia fortunei infected by phytoplasma, and RLM-5'RACE and dual luciferase analyses verified the relationship. The PfmiR156 cleavage site was located at 1104 nt and 1177 nt of PfSPL1 and PfSPL10, respectively. MG132 and epoxomicin, two 26S proteasome inhibitors, significantly increased the accumulation of PfSPL1. PfSPL1 was also the attack target of phytoplasma effectors (Pawb 3/9/16/37/51) after the phytoplasma invaded Paulownia. Moreover, molecular docking implied that the effectors may interact with the conserved SBP domain of the target protein PfSPL1. Basically, these results indicated that the stability of PfSPL1 was regulated by PfmiR156 cleavage activity and/or the 26S proteasome pathway at the post-translation level. The PfSPL1, which is a transcription factor, was also the one of the targets of multiple effectors attacking Paulownia. This study provides a good scope to understand the paulownia phytoplasma infecting mechanism.


Assuntos
Lamiales , Phytoplasma , Phytoplasma/genética , Fatores de Transcrição/genética , Simulação de Acoplamento Molecular , Regulação da Expressão Gênica de Plantas
15.
Int J Mol Sci ; 24(9)2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-37176130

RESUMO

Central American and Mexican Pinguicula species are characterized by enormous divergence in size and color of flowers and are pollinated by butterflies, flies, bees, and hummingbirds. It is known that floral trichomes are key characters in plant-pollinator interaction. The main aim of our study was to verify our hypothesis that the distribution and diversity of non-glandular and glandular trichomes are related to the pollinator syndromes rather than the phylogenetic relationships. The studied sample consisted of Central American and Mexican species. In our study, we relied on light microscopy and scanning electron microscopy with a phylogenetic perspective based on ITS DNA sequences. The flower morphology of species pollinated by butterflies and hummingbirds was similar in contrast to species pollinated by flies and bees. Species pollinated by butterflies and hummingbirds contained low diversity of non-glandular trichomes, which occurred mostly in the tube and basal part of the spur. Surprisingly, in P. esseriana and P. mesophytica, non-glandular trichomes also occurred at the base of lower lip petals. In the case of species pollinated by flies/bees, we observed a high variety of non-glandular trichomes, which occurred on the surface of corolla petals, in the tube, and at the entrance to the spur. Furthermore, we did not identify any non-glandular trichomes in the spur. The capitate glandular trichomes were of similar morphology in all examined species. There were minor differences in the shape of the trichome head, as well as the length and the number of stalk cells. The distribution and the diversity of non-glandular and glandular trichomes and pollinator syndromes were mapped onto a phylogenetic reconstruction of the genus. Most micromorphological characters appear to be associated more with floral adaptation to pollinators and less with phylogeny.


Assuntos
Borboletas , Lamiales , Abelhas/genética , Animais , Polinização , Tricomas/genética , Filogenia , Flores/genética , Flores/anatomia & histologia , América Central
16.
PLoS One ; 18(5): e0284650, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37195912

RESUMO

Situated in the southern end of the Annamite Mountain Range, Langbiang Plateau is a major biodiversity hotspot of southern Vietnam known for high species diversity and endemicity. To achieve effective conservation, parts of the plateau were designated as the Langbiang Biosphere Reserve, an UNESCO World Network aiming to improve relationships between inhabitants and their environments. Amongst the rich endemic flora of the plateau are three gesneriads ascribed to Primulina, a calciphilous genus with high species diversity in the vast limestone karsts stretching from southern China to northern Vietnam. However, a recent phylogenetic study questioned the generic placement of the Langbiang Primulina, corroborating with observations on the geographical distribution, habitat preference, and phyllotaxy of the three species. Based on phylogenetic analyses of nuclear ITS and plastid trnL-F DNA sequences of a comprehensive sampling covering nearly all genera of the Old World Gesneriaceae, we demonstrate that the three Langbiang Primulina species form a fully supported clade distantly related to other Primulina. As this clade is biogeographically, ecologically, morphologically, and phylogenetically distinct worthy of generic recognition, we propose to name it Langbiangia gen. nov. to highlight the rich and unique biodiversity of the Langbiang Plateau. By means of this taxonomic endeavor, we are hoping to raise the conservation awareness of this biodiversity heritage of southern Vietnam and promote the importance of Langbiang Biosphere Reserve that is crucial for achieving action-oriented global targets of the post-2020 global biodiversity framework (GBF) of the UN Convention on Biological Diversity (CBD)-effective conservation and management of at least 30% of biodiverse terrestrial, inland water, and costal and marine areas by 2030-that has been agreed at the COP15 in Montréal in December 2022.


Assuntos
Biodiversidade , Lamiales , Filogenia , Vietnã , Ecossistema
17.
Int J Mol Sci ; 24(6)2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36982381

RESUMO

Carnivorous plants in the genus Byblis obtain nutrients by secreting viscous glue drops and enzymes that trap and digest small organisms. Here, we used B. guehoi to test the long-held theory that different trichomes play different roles in carnivorous plants. In the leaves of B. guehoi, we observed a 1:2.5:14 ratio of long-stalked, short-stalked, and sessile trichomes. We demonstrated that the stalked trichomes play major roles in the production of glue droplets, while the sessile trichomes secrete digestive enzymes, namely proteases and phosphatases. In addition to absorbing digested small molecules via channels/transporters, several carnivorous plants employ a more efficient system: endocytosis of large protein molecules. By feeding B. guehoi fluorescein isothiocyanate-labeled bovine serum albumin (FITC-BSA) to monitor protein transport, we found that sessile trichomes exhibited more endocytosis than long- and short-stalked trichomes. The uptaken FITC-BSA was delivered to the neighboring short epidermal cells in the same row as the sessile trichomes, then to the underlying mesophyll cells; however, no signals were detected in the parallel rows of long epidermis cells. The FITC control could be taken up by sessile trichomes but not transported out. Our study shows that B. guehoi has developed a well-organized system to maximize its food supply, consisting of stalked trichomes for prey predation and sessile trichomes for prey digestion. Moreover, the finding that sessile trichomes transfer large, endocytosed protein molecules to the underlying mesophyll, and putatively to the vascular tissues, but not laterally to the terminally differentiated epidermis, indicates that the nutrient transport system has evolved to maximize efficiency.


Assuntos
Lamiales , Tricomas , Animais , Comportamento Predatório , Folhas de Planta/metabolismo , Digestão
18.
Int J Mol Sci ; 24(6)2023 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-36982448

RESUMO

Our previous study was the first to confirm that the predominant conformation of mitochondrial genome (mitogenome) sequence of Salvia species contains two circular chromosomes. To further understand the organization, variation, and evolution of Salvia mitogenomes, we characterized the mitogenome of Salvia officinalis. The mitogenome of S. officinalis was sequenced using Illumina short reads and Nanopore long reads and assembled using a hybrid assembly strategy. We found that the predominant conformation of the S. officinalis mitogenome also had two circular chromosomes that were 268,341 bp (MC1) and 39,827 bp (MC2) in length. The S. officinalis mitogenome encoded an angiosperm-typical set of 24 core genes, 9 variable genes, 3 rRNA genes, and 16 tRNA genes. We found many rearrangements of the Salvia mitogenome through inter- and intra-specific comparisons. A phylogenetic analysis of the coding sequences (CDs) of 26 common protein-coding genes (PCGs) of 11 Lamiales species and 2 outgroup taxa strongly indicated that the S. officinalis was a sister taxon to S. miltiorrhiza, consistent with the results obtained using concatenated CDs of common plastid genes. The mapping of RNA-seq data to the CDs of PCGs led to the identification of 451 C-to-U RNA editing sites from 31 PCGs of the S. officinalis mitogenome. Using PCR amplification and Sanger sequencing methods, we successfully validated 113 of the 126 RNA editing sites from 11 PCGs. The results of this study suggest that the predominant conformation of the S. officinalis mitogenome are two circular chromosomes, and the stop gain of rpl5 was found through RNA editing events of the Salvia mitogenome.


Assuntos
Genoma Mitocondrial , Lamiaceae , Lamiales , Salvia officinalis , Lamiaceae/genética , Lamiales/genética , Filogenia , Edição de RNA/genética , RNA de Transferência/genética , RNA de Transferência/química
19.
BMC Genom Data ; 24(1): 14, 2023 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-36869291

RESUMO

OBJECTIVES: Petrea volubilis, a member of the Order Lamiales and the Verbenaceae family, is an important horticultural species that has been used in traditional folk medicine. To provide a genome sequence for comparative studies within the Order Lamiales that includes important families such as Lamiaceae (mints), we generated a long-read, chromosome-scale genome assembly of this species. DATA DESCRIPTION: Using a total of 45.5 Gb of Pacific Biosciences long read sequence, we generated a 480.2 Mb assembly of P. volubilis, of which, 93% is chromosome anchored. Representation of genic regions was robust with 96.6% of the Benchmarking of Universal Single Copy Orthologs present in the genome assembly. A total of 57.8% of the genome was annotated as a repetitive sequence. Using a gene annotation pipeline that included refinement of gene models using transcript evidence, 30,982 high confidence genes were annotated. Access to the P. volubilis genome will facilitate evolutionary studies in the Lamiales, a key order of Asterids that includes significant crop and medicinal plant species.


Assuntos
Lamiales , Verbenaceae , Humanos , Benchmarking , Evolução Biológica , Cromossomos
20.
Zhongguo Zhong Yao Za Zhi ; 48(1): 52-59, 2023 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-36725258

RESUMO

This study investigated the choroplast genome sequence of wild Atractylodes lancea from Yuexi in Anhui province by high-throughput sequencing, followed by characterization of the genome structure, which laid a foundation for the species identification, analysis of genetic diversity, and resource conservation of A. lancea. To be specific, the total genomic DNA was extracted from the leaves of A. lancea with the improved CTAB method. The chloroplast genome of A. lancea was sequenced by the high-throughput sequencing technology, followed by assembling by metaSPAdes and annotation by CPGAVAS2. Bioiformatics methods were employed for the analysis of simple sequence repeats(SSRs), inverted repeat(IR) border, codon bias, and phylogeny. The results showed that the whole chloroplast genome of A. lancea was 153 178 bp, with an 84 226 bp large single copy(LSC) and a 18 658 bp small single copy(SSC) separated by a pair of IRs(25 147 bp). The genome had the GC content of 37.7% and 124 genes: 87 protein-coding genes, 8 rRNA genes, and 29 tRNA genes. It had 26 287 codons and encoded 20 amino acids. Phylogenetic analysis showed that Atractylodes species clustered into one clade and that A. lancea had close genetic relationship with A. koreana. This study established a method for sequencing the chloroplast genome of A. lancea and enriched the genetic resources of Compositae. The findings are expected to lay a foundation for species identification, analysis of genetic diversity, and resource conservation of A. lancea.


Assuntos
Atractylodes , Genoma de Cloroplastos , Lamiales , Filogenia , Atractylodes/genética , Sequenciamento Completo do Genoma , Repetições de Microssatélites
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...